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FAILUKE TIME DISTRIBUTIONS: ESTIMATES AND
ASYMPT(T IC RESULTS
by

JANGS GALAMBOS
Temple Umniversity

Departmeat of Mathematics, Temple Umiversity,

Philadelpkia, Pa. 19122, USA.

ABSTRACT

The psper deals with life distributioms for cokereamt
systems of compoments. Two major questioms sre diseussed:
(1) estimatiom of system life from dsta, or kmowledge, om
sompomrent li,es, amd (1i) asymptotic models. Both ques-

tioms are related to extremes of a sequemce of remdom
variables through the path set samd cut set decomposition
of coheremnt systems, which reduce a cohereat system to

either a parallel or series system. Simce for these de-

compositions, the classicel theory of extremes of imde~
pendent amd idemtically distributed ramdom veriables

does mot provide an acceptable approximetion, the emphasis
is om dependent random variables, or whem the ramdom

verisbles are not idemtically distributed. The imequalities

E presentec whem Gdiscussing questiom (1) above are applicable
not only to extreme value problems but to am arbitrary

multivariste distribution using lower dimemsiomal mergia -ls.
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2.

The ssymptotic modeles are discussed in the light of
hazard rate properties of the limitimg distributioas
of the models. A parametric family of distributioms is
proposed for aspproximatimg life distributioms whkose
hazard rete is bath-tub shaped, thus represemting a

bura~-in period, am accidemtal failure period ard a

el g i k20 PG

wear-out period.

Key words and phrases: cohereat system, compomeant life,

system life, cut set decompositiom, path set de-
compogition, depemdemce, extremes, inequalities,
multivariate distributions, asymptotie models,
failure time distributioms, Weibull distribution,
hazerd rate, bura-in period, accidemtel failure
period, wear-out period, bath-tudb shaped hazard

rate.
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3.

l. Cokerent systems: defimitiomns amd dasic

properties

Let a system consist of = components. We shall refer
to m as the size of the system. Our imterest both im each
conmponent amnd im the system is whether it functioms or it
failed to functiom. By measurimg time from a fixed originms,
we imtroduce to the j=th compomemt the ramdom life lemgth
XJ ¢ the first poimt in time when compoment jJ feils to
fumction. At eamh fixed poimt x of time, we defime

1 if X
I.(x) = 32 %
J 0 i Xyex;

that is, Ia(x), the imdicator of the evemt {Ij>x}, is
ome if the j-th compoment fumctioms at time x, amd zero
if it failed bsfore or at x. Whemn 1t doems mot lead to
confusion, we sometimes suppress <the varisble x , amd
we refer to IJ as the imdicator of the Jj-th compoment's

fumctioning or failure.

We assume that, at any givea time x, the fumotion-
ing and failure states of the compoments umiguely determine
whethor the system fumctioms or failed to fumctiomn. Im
other words, there is a fumction S8 of = variables,
which takes the values 1 amd O only amd such that
S=3 = S(Il(x), Io(x)yeeey I‘(x)) equals ome if the

i
e e




system functioms at time x amd zero if it failed before
or st x. We call S the structure (fumctiom) of the

system. The time T +to the first failure of the system

is called the system life, or om some occasioms, the

failure time.

Notice that each variable of S 1is either zero or
one. Vhen a variable of S is imcreased from zero to
ome (that is, a feiled componert is replaced by a fumc-
tioning ome), we assume that it could mot have a negative
effect on S. Im other words, if S =1 when In(x) =0
(that is, the system fumctioms although the j-th compoment
feiled), then S = 1 slso whem Ij(x) = 1 (that is, the
system slso fumctioms wher the j-th compomeat fumctioms),
assuming that there is no chamnge in the states of the
other components. When this evident requirement is satis-
fied, we call the system (or the structure S) cohereat.
The mathematical equivalent of the above desoribed property
is thet the structure fumctiomn S is momdecreasing in
each of ite variables. We shall also assume that each
component serves some purpose in the semse that S i»

not comstant in amny of its varisbles.

There are two specisl systems which will play specifie

roles in the sequel and which we defime below.

Series system. If a system fails as socn as ome of

o iae i
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its compoments fails, we call it a series system. For
such a system, S = 1 if, and only if, eech 13 = 1,
Hemce

8(11, 12'0-0, In) = mn(11. 12’000, In)o
Similerly, by defimition,
T = min(xl, Xz.---, xl).

_Eg;allel system. We call a systea parallel, if it

functions as long as ome of its compoments fumctions. It
thus follows that

S(Il’ 12'000’ I‘) = m(II, 12,000’ I‘)

and
T = -nx(xl, Xpseeey X‘).
Since each Ij is either O or 1,
min(Iy, Ippeeey I) = LiIpeee I, (1)
and

1 - max(Iy, Ippeesy 1)) = (1 = I3)(1 = Ip)eee(1 = 1), (2)

where, on the right hand sides, ordimary multiplication
is applied. This flexibility, of course, is mot valid for
any other variables (other than those taking the values
O and 1 only), amd thus am expression for S may mot

be & quiek tool for fiadimg T a» & fumction of the x3 .
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The idemtities (1) amd (2) also indicete that one cam
have several expressions for S (which are naturally
idemtical in velue), and the same is true fox T. There
is, however, ome expressiom for S, in wkich only the
functioms max and min occur, amd im this form, if
IJ is replaced by XJ, then S treamsforms into T.
For formalating this special represemtatiom, let us

start with ar example.

k=-out -« of = n system. A system is called a

k-out=-0f-n system, if its size is » and if it fumc-
tioms if, and omly if, at least k of its compoments
function (1 k =m). With the delts fumctiom

1 1r 1>

A (1,3) -{

o otherwise,
evidently

S(Iyy Ippeeey I) = A(I) + I, +eeet I, K)o
The definition also yielRds that

TsX

n-k+lin ?
where xrz‘ is the r-th order stetistic in the sequemce
< <




xl—k+l:n = ux{min(xil, 112,..., xik)?

and

A(I".'Il"ooo*ln,k) = max{mil(lil, 112,000’ Iik)} ,

where 1 511<12 < oo <1ksn, snd the maximum is taken
over all the possible choices of the k subscripts ij,
1£) <k, we expressed S and T by the same fumctiom of

the variables Ij and XJ s 1€J<n, respectively.

The expressioms for S amd T as the maximum of
some variables skhows that a k-out-of-mr system cam also
be viewed as & parallel system. Imndeed, if we fix the in-
tegers 1£il< 12< vee <ikSn and we connect these Xk
eomponents into a series system, then the parallel system
whose eompomerts are the just comstructed (;) series
systems is equivalent to the origimel k-out-of-a system
in that their structure fumctioms and their system lifes

are idemtical.

The fact that, by suiteble groupimg of compoments, a
system cam be reduced to a parasllel system is mot special
t0 the k-out-of-n system. Indeed, am arbitrary cohereat
system cam be reduced to a parsllel (or a series) system.

Por provimg this fact, we imtroduce the followimg comcepts.

Minimal path sets. A path set of & cokeremt system is

a set C of compoments such that if each member of C
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functions then the system fumctioms. A path set is mimi-
mal, if the removsl of s simgle elememt from it results im

its failure to remain a path set.

Minimnl‘ggjnsets: A met C of compoments is called
a cut set if the system foils whemever each member of C 1
fails. A cut set is minimal if mo element cean be removed

from it without violating its cut set property.

Now, a coheremt system which is capable of functionimg
is mecessarily botla pagh set amd a cut set. Therefore,
every such cohereat system has st least ome minimsl path
set and one mirimal cut set. Let Ayy Apyecey Ap and cl,
C2,..., Cm be the distinct minimal path and cut sets,
respectively, for a givem coheremt system. Then)by defini-
tion,

S(Il, Ippeces In) = 1 max

‘A
<
I\

—
’AE
ot
A

and
= max i min xJZ-
12v<p L€, 1<t<m
Putting
Ut = min X Vt =
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we obtaimed

t

In other words, the system life of an arbitrary cohereat
system is sn extreme value (maximum or mimimum) of s
suitably chosem sequemce of ramdom veriables. Its distrib-
ution fumction, which we call a failure time distribution
(for coheremt systems), is therefore am extreme value
distribution in some appropriate model. It skould be
emphasized that imdepemdence amd stationarity cemnot be
assuned here evem if the orogomal compoments are believed
to functiom imdepemdently (sueh a case is rare though,

see the last but ome paragraph irn the mext section in

this regsrd). Becsuse the mimimal path sets A, (or the
ninimal cut sets ct) are mot disjoint, the ramdom verisbhles
U, amd V, of (3) are stromgly dependemt. Their depemdence
is determimed by the structure of the umderlying system

and by the depemdemce of the origimal compoments. Heamce,
their depemdemce is mever a matter of arbitrary assumptioms.
Thus the study of these distributioms is an imtegral part
of the theory of extremes for depemdemt models. While

such & theory is well developed im Chapter 3 of the presemt
author’s wook, Galambos (1978), we shall discuss some points
of this theory as they relate to fallure time distribdbu-
tioms. Although in the presemt parsgraph we defimed failure

time distributioms in terms of coherent systems, much of
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what is to be said aleo epplies to failure times of dams,
when failure is csused by high floode; of sir cuality,
when failure is defimed by the fect that some specific
pollutant exceeds s givenm level of comcemtratiom, amd to
other diverse fields. We shall, however, remaimn in our
discussion at coherent systems, and we use the motatioms

of the presemt section throughout the psper.

The comcepts and relatioms discussed here first
appeared im the paper Birmbaum et al. (1961). Later
extensiors of these relstioms sre micely brought together
into & theory by Barlow amd Proscham (1975). Our discussion

here does not overlap with the comtent of this book.

2. Asymptotic extreme value distributioms

as fsilure time distributions

We have seen that T can always be expressed as the
maximum or the mimimum of some ramdom vsriables. Simce im
theso representations either p or m is large for a system
with 2 large number = of compomexrts (recall that we
agreed not to comsider momessemtial compoments defimed as
compoments im whose imdicators the structure fumctioa S

is comstent), we assume for the general discussiom thet

T= max U, (q)

with pP large. Now, if the distributions amd the inter-

T P
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N

dependence of the Ut are kmown them the diatributionm of

T is uniquely determined. Hemce, omly that case presents

a problem when either the distributiom functioms Ft(x)

= P(Ut<:x), 1<t <p, or the depemdemce relation of the ¥
Ut are unkmows. Imn such cases, am spproximetiom becomes
necessary. It is showm om p. 90 of Galambos (1978) (amd
further explored in Galambos (1981)) that a relisble
approgimation to the distributiom of T canmot be obtaimed
through an approximation to Ft(x). Rather, ome should
develop & depemdent model for the Ut » evaluate the
possible limitimg distributioms for the maximum in that
model, and ome of these possibilities is to be applied

ae am approximation to the distribution of T.

There are a mumber of dependeat models for which
the mathematicsl results sre at am advamced stage (although
far from complete). These are described im Chapter 3 of
the memtioned ook of the preszemt author, from which we

wuote the following results.

(1) Approximatior by the classical model (the U,
are imdepemdent amd idemtically distributed)
is ver rarely justified, but whem it &s appli-
cable, them the failure time distribution 1is
Weibull.

(11) The assumption that the U, form a sequemce of

exchangeable ramndom varisbles is mathematically
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always justified. But, because of this gemer-
ality, the possible limit laws for the maximum
form a very large family. The investigstiom of
the properties of some subfamilies of these
distributioms would be 8 very importamt task.
(It should be remsarked that, comtrary to the
claim im the paper Zidek, et al. (1979), the

L

sequemnce Ut cannot, in gemeral, be comsidered
as a segment of am infinite sequemce of ex-

changeable varisbles; omly fimite exchangeabil-

LT .

ity is Justified.)

(1ii) There is a gemersl depemdent model, im which
the possible limit laws for the meximum coimcide
with the distributioms whose hazard rate fume-
tion {defined below) is momotomic (see Sec~
tione 3.9 amd 3.10 in the quosed book). Because
of the sigmnificance of this result to emgimeers,

we discuss this comclusion in more detail.

Engineers have recogmnized for a lomg time the impor-
tance of the hazard rate fumction of a failure time dis-

tribution. Let us first give the defimition of hazard
rate.

l Let X0 be e readom varisble with distributiom
function P(x) amd with demsity fumctiom f£(x) = P'(x). Then 3
the hazard rate r(x) of X is defimed by the limit relatioa




{
r(x) = lim — P(X<x + J’xlex).
5x=0 §x

An essy calculation yields from this limit relatiom

()

r(x) = ————-
l - Rx)

. (s)

While this latter form is & convemient formula for
actually calculating »r\x), the defimition of r(x) is
what makes it applicable. When X represeamts a random
life, them the conditiomal probability P(X<x + &x ‘ X2x)
expresses the probability of X*s failimg in the short
imterval (x, x + d x), given that X has survived beyond
x. It is appareat to an emgimeer that a mew system of
components whose life is represemted by X may have

some positive probability of failimg immediately after
production, but this probability decresases as time

passes (burm-im period). Om ¢he other hend, am old spstem

of compoments is more amd more likely to fail as time

passes (ageing or wesr-out per;od). Between the bura-im

and wear-out periods, for most systems, it is o.ccepted

(occidental failure evved ),
that only accidemts may cause failureY The a?'ociiguo"’L'—"'

definition of accidents is either by comstamt hagzard rates
or by the lsck of memory property

P(X>2x +y|X2x) = P(X2Yy).

See Section 1.5 im Galambos amd Kotz (1978) to see that
these two seemingly different defimitioms are equivalent.

it e raiamir s A 0 ais




Noticing that comstant hazard rate can also be viewed

as both mondecreasing amd momimoreasing, that is monotonmic, :
we comclude that the life length of a system can be split
into three periods, in each of which the hazard rste of

the life distribution is momotomic. It is very pleasing

P

to see that the mathematical theory through structure ]
functions and extreme value theory led to & similar

comclusion.

Returaing to the simple argument of the preseding
peregraph, we cam also fimd it reasomable that the smaller

is the change in the hazard rate the closer we are to the

accidental failure period (that is, sharper decreases
occur at the begimming of the burm-im period tham later
in this same period amd sharper amnd sharper imcreases im
the hazard rate are experiemced during the wear-out period
as time pesses). This, when tramslated imto mathematical
terms, implies that the hazard rate functiom is conmvex,
which, together with the three periods discussed earlier,
ies frequemtly referred to as the hagard rate fumctiom is
bath=-tub shaped.

A good approximstion to most empiriceal results cam
be obtaimed by the followimg bath tud shaped hazard rate
funotion:

A(x = a)? + ¢ if O<x<a

r(x;A,a,0,B,b) =9 ¢ if a<x<h
B(x = b)° + ¢ it x2Y .
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The constant c >0 represents the comstamt hazard rate
during the accidental failure period (a,b), while the
bura-im period lasta upto the poimt a and the wear-out
period starts at b . The comstamts A>O0 and B>O0

are shape parsmeters. The choice of & quadratic functiom
is ardbitrary here¢, but whemn an approximariom is to be
found on an empirical basis rather than by theoretical
arguments, thea the shape parameters give sufficiemt
flexibility to get . good approximasion. We add here

that there is no result regardimg the statistical anslysis
of the distribution whose hazard rate is r(x;A,a,c,B,b).

Its study would be very useful.

There is, of course, a well determined reaation
between a distribution functiom and ite hszard rste
fusction. Namely, if we write (5) im the form

af1a(1 - Xx))}

r(x) = - »
dx

ther we immediately see that F(x) umiguely determimes
r(x). Om the other hamd, we get by imtegratiom from the

above relationm,

Mx) =1 - QXP{ -§r(t\dt}, x>0,
0

We thus see that when the hezard rate is comstamt, thea
the distributiom fumctiorn ies expomential. Im particuler,
during the accidemtal failure period, failure time distribu-

. Tt ey
PRIV 3. 7




tioms are always expomential. This observation leads
us to the followimg importaat comclusiom. Assume mow
that all compoments as well as the system achieved the
accidental failure period. This means, that both the
components and the system have expornential fsilure
dietributions (for a certaim period of time omly). It
then follows from a result of Esary et al. (1971) that
the compoments, with the exceptiomn of series= systenms,

are not stochastically imdependent. That is, ome cammot

comstruct a single structure other than s series system

in which the compoments would fumction indepemdemtly

(amd whioch system would achieve am accidemtal failure
period). This is & very importamt comclusion because
seversl estimates om relisbility are developed in the
literature under the assumption that the compomeats are
independent.

Pinally, we remark that there are a numbder of
characterization theorems for expomemntiality (see the
book Galambos emd Kotz (1978)) which can be used for
testing whether s system is im its accidemtal failure
period. Ia most cases, those limited characterigation
theorems are sufficiemt when ome assumes a priori that
the underlying distribution is of momotomic hazard rate.
A typical result of this mature csm be foumd in Ahsa-
nullak (1977).
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3. Estimates on failure time
distributions

We have emphasized im the previous section that
compomente for most structures camnot functiom imdepen-
demtly of eackh other. At the same time, we may kmow
exactly the distribution of compoment lives, mainly
through characterization theorems. This leads us to the
problem of eastimating failure time distributioms by
the distributions of componeat lives under some assump~

tion of depemdemce of the components.

We use the path set and cut set decompositionms,
in view of which structure life is am extreme of
®"gompoment lives" (where "component” is either a mimimsl
path set or a mimimal cut set). Through this approach,
the mathematical problem ig the estimstiom of the
distribution fumctiom H (x) of

T = ll.x(Ul, Uz,ooo’ Up)

under some form of depemdence of the Ut and under the
assumption that the distributiom fumctioms Ft(x) -
KU, < x) are kmown. .

There is ome comcept of dependence, the so called
sssociation of random variables, for which there is am
extensive literature with reliability emphasis (see
Barlow amd Proschaam (1975) amd Netvig (1980)). However,




these works deal with estimatimg E(T) in terms of E(U,),
1<t <p, rather than giving estimates on H‘(x).

Since we deal with distributioas, we express de-
vendence through distributiomsl assumptions. The simplest
distributional assumption is,of course, whem omly bivariate
distributions are imvolved. For simplicity, we imtroduce

the motations Ad = AJ(x) 3{032 x}
S1,p(x) =8y 5= Ji‘ P(44),

Sz'p(x) = s;_,'p = Z P‘“i"‘a)'
l1€<i1c<ci<p '

and we let », = np(x) stand for the mumber of those A 3
which occur. Then H‘(x) = P(% = 0), Sl,p = E(lp)

2
and Zsz’p + sl,p E(np). This latter mesnimg of sl.p

and 82 makes them appealing to the applied statisticiam,

34
while their originmal defimitiom is the useful fora in

mthenatical arguments. It is slightly more coavemient
to state results for 1 ~ H (x) = P(m >1) than for H (x)

itself, and we skhall do 80 delow. Let us comsider eati-

mates of the form
£ > <
€8 ,*+b8, < P(ﬁ,l) o5 ,+48 (6)

where a, b, c end @ are comstants (which, im primciple,

may depend om X suppressed in all motatioms).
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The best lower bound im (6) is kmown (Ewerel (1975)

and Gelambos (1977)), according to which & and b

should be of the form @ = 2/(k+1) and b = <2/k(k+1),
where 1<k.p 1is am integer. It is ther easy to find

the optimal k which equals [.282,;/31,;:] + 1, where [y]
eignifies the integer psrt of y. (Notice that k = 1 yields
the classical estimage by the method of imclusiom and
exclusiomn.) For the upper bound im (6), omly partial

results are avsilable. The best knowna result is ¢ = 1

snd d = -2/p (Koumias (1968) and Galsmbos (1975)).

Before proceeding with the discussiom of the estimates
in (6), motice the followimg importamt fact. The results
guoted in the previous paragraph are such that the coef-
ficients a,b,¢c and d do not depend on x. Hemoce, they
remain valid if we redefime A,. Now, if A, a{UJZng,
then

fmp = 0F = {0393, Up<ppeney U<y ¥,y

and thus (6) provides estimates or the p-variste distribu-
tion of the U 3 in terms of univariate and bivariste mar-
ginals. These inequalitites should be taken into accoumt
when one is interested in comstructing multiveriate dis-

tributions with given (univariate and biveriste) margimals.

Let ue retura to (6). Since P(%g 1) is related to
the distribution of the meximum of the Uy ome would like
to get suitable extemsions of (6) ¢to P(%Z r), r21,
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which is relevant for the distribution of the (p-r+l)-st
order statistic of the U:j + Two methods of proof of (6)
lead to interesting results in this direction. Ome proof,
which roughly says that (6) is valid for arbitrary (de-
pendent) sequence of UJ if it is valid when the Uj are
i.i.d., implies that a set of coefficients in (6) deter-
mines & set of coefficients for estimating P(mpar)

in the form of (6) (Galambos amd Mucci (1980)). The
other proof, imtroduced in Galambos (1977), provides a
technique which can be used with success in more gemeral
cases tham (6) (for example, to P(npg r) for amy r>1,
and with boumds not mecessarily limesr). Om this line

of extemsiom of (6), we memtion Sathe et al. (1980).

Por earlier results on imequalities of the nature of (6),

see the survey st the emnd of Chapter 1 of Galambos (1978).
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